

optimising railways

SMA Offices

Zürich
Lausanne
Frankfurt

Paris

SMA and partners Ltd

Gubelstrasse 28
8050 Zurich
Switzerland
Phone +41 44 317 50 60
info@sma-partner.com
www.sma-partner.com

 1-00 | 19/09/2022 | Software | Public

An Architectural Overview of the Robustness Analysis: Train
Simulation via Algorithm Platform

Abstract

In this post we want to outline the high-level architecture of Viriato's macroscopic
train simulator, which will be used for Viriato's new robustness analysis module
currently being implemented by our development team. Roughly speaking
robustness can be seen as the ability of a timetable to recover from delays caused
by unforeseen events, including the potential rescheduling efforts. For a more
precise definition we refer the interested reader to our annual report 2021 (pp. 18-
20). In a Viriato robustness analysis we investigate the effects on the planned
timetable, and how long it takes to return to normal train operation, after a
disturbance has occurred on the network. The core of our robustness tool is a
macroscopic train simulator. For a background about the relationship between
train simulation and robustness we recommend our previous posts 04.11.2020
Robustness vs. Train Simulation and 11.06.2021 - Robustness Analysis through
the Algorithm Platform.

Problem Context

For each case where there are deviations from the planned timetable, the
infrastructure manager has to implement a dispatching strategy to solve the
conflicts which arise. This strategy differs between different organisations
because it is possible to prioritise according to a wide range of properties, such
as the train type (e.g. long distance vs. short distance) or the train's route and the
available infrastructure capacity. We divide the activities that are necessary for a
robustness analysis between two main components: the Simulator for the general
procedure and the Dispatcher for the implementation-specific strategy.
Furthermore, we use an event-based representation of the timetable which
enables the simulator to propose an arrival or departure event which the
dispatcher can accept or refuse. Both the simulator and the dispatcher are
controlled and coordinated by Viriato's Algorithm Platform (see Figure 1 for an
overview).

https://staging.sma-partner.livingtech.ch/storage/app/media/Dokumente/Gesch%C3%A4ftsberichte/GB-2021_en.pdf
https://staging.sma-partner.livingtech.ch/storage/app/media/Dokumente/Gesch%C3%A4ftsberichte/GB-2021_en.pdf
https://staging.sma-partner.livingtech.ch/de/software/openviriato#robustness-vs-train-simulation
https://staging.sma-partner.livingtech.ch/de/software/openviriato#robustness-vs-train-simulation
https://staging.sma-partner.livingtech.ch/de/software/openviriato#robustness-analysis-through-algorithm-platform
https://staging.sma-partner.livingtech.ch/de/software/openviriato#robustness-analysis-through-algorithm-platform

An Architectural Overview of the Robustness Analysis: Train Simulation via Algorithm Platform SMA and partners Ltd

2 2

 1-00 | 19/09/2022 | Software | Public

Figure 1 Overview of the relevant components and the data flow (in the direction of the arrows) between

them. Note that the dashed line separates the two actors in the architecture.

Conflict Resolution during the Simulation

When a robustness analysis is started the timetable is converted into the event-
based model and sent to the simulator (Step 1 in Figure 1). Typically, this is the
timetable as planned in Viriato but it is also possible that another algorithm
provides a timetable to the Algorithm Platform (or modifies the Viriato one) before
it is passed to the simulator.

The main task for the simulator is to find the next realisable event (i.e. the next
event that can be performed). For this, the future traffic situation needs to be
predicted by taking into account the current position of trains on the railway
network, their current delays and the possible reduction of these delays through
the consumption of their planned time reserves. The next event in chronological
order is chosen and checked for conflicts that would hinder it from being actually
realised (Steps 2 and 3). If there is a conflict then the event is postponed as long

An Architectural Overview of the Robustness Analysis: Train Simulation via Algorithm Platform SMA and partners Ltd

3 3

 1-00 | 19/09/2022 | Software | Public

as necessary to solve the conflict and the search starts over again. This means
that the simulator manages compliance with the abstracted interlocking rules. For
example, this models the real-world situation where a train has to wait to enter a
section because it is already blocked by another train.

To accomplish this task, the simulator uses Viriato's existing conflict detection
model. Only conflicts between trains are regarded by the simulator, and conflicts
between a train and the infrastructure (e.g. driving in the wrong direction) are not
taken into account. We assume that there are no conflicts of this type in the
original timetable as it is impossible to cause or resolve them simply by postponing
a train. For conflicts between two trains we distinguish between the initiating and
the affected train, where the initiating train does something that hinders the
affected train. E.g. consider a single-track section where two trains are to travel
in opposing directions. The initiating train will be able to depart, blocking the
section track and preventing the affected train from entering the section. That
means that the conflict is not relevant for the initiating train but will have an impact
on the affected train until the line section is clear. The affected train will be delayed
by the simulator to provide a solution to this conflict, leading to an updated
forecast time for its next event. This procedure is continued iteratively until a
realisable event is found, which is then sent to the dispatcher for processing via
the Algorithm Platform (Steps 4 & 5).

Customisable dispatcher

The dispatcher is a self-contained algorithm running outside of Viriato. Therefore,
it can be replaced or modified for the differing needs of railway organisations.
When the dispatcher is given an event, it has two main options (Step 6) - to realise
or to postpone the event. This is sufficiently flexible to implement more complex
operations such as changing the order through overtaking at a station or to decide
where trains will cross.

A very basic dispatcher would simply realise all events, thereby letting the
simulator solve all conflicts through delaying the affected train. However, a more
useful dispatcher would also have the option to postpone the initiating train itself
if the affected train has a higher priority. Another reason for a dispatcher to
introduce an additional delay could be to wait for the arrival of another train to
satisfy connections or other operational constraints. To enable a dispatcher to
make a good decision requires a prediction showing the probable consequences
of each option. As it has access to the Algorithm Interface, the dispatcher can also
make use of the rich features of the Algorithm Platform such as infrastructure
exploration or running time calculations.

An Architectural Overview of the Robustness Analysis: Train Simulation via Algorithm Platform SMA and partners Ltd

4 4

 1-00 | 19/09/2022 | Software | Public

Each dispatching decision is returned to the simulator (Step 7) where it is
processed and included in the forecast calculation to determine the next realisable
event.

Analysing the result

After a successful run the result can be analysed in various ways. The most
important KPIs (e.g. average delays, total delay and time to recover) are
calculated automatically by Viriato and presented to the user. But there is also the
option to export raw data (like the delay log) which can be used to calculate further
KPIs. Another feature is to write a simulated timetable back to Viriato where it can
be compared with the planned one, for example by using Viriato's graphic
timetable.

Layered Domain Model

We have seen above that the simulation covers various aspects specific to the
railway domain: Planned arrival and departure times, the route of a train on the
infrastructure and the minimum running and stopping times all stem from the
timetable. The conflict detection and resolution in the simulator and the train
dispatching by an actor are other operations. Each of these aspects forms a
domain layer and are reflected by the architectural components depicted in Figure
1.

Implementing a Dispatching Strategy

Implementing a dispatcher is done in the same way as any other algorithm that
communicates with Viriato via the Algorithm Interface. As the interface itself is a
REST interface it supports X-language development. However, to increase
development productivity we offer the py_client and the CSharpClient as native
client implementations to support type hints and explicit typing respectively. Both
provide a native interface and abstract the communication layer in order to simplify
the interaction with the REST backend. The py_client is opensource and is
available at GitHub.

A simple dispatcher in Python is straightforward. The following code snippet starts
the simulation and provides a dispatcher working in a first-come first-served
manner which realises all events.

https://github.com/sma-software/openviriato.algorithm-platform.py-client/releases/tag/22R1-Product-37

An Architectural Overview of the Robustness Analysis: Train Simulation via Algorithm Platform SMA and partners Ltd

5 5

 1-00 | 19/09/2022 | Software | Public

When the next event is requested, the dispatcher receives an instance of the
type AlgorithmTrainSimulationRealizationForecast. This object includes the next
event and also all events that had to be postponed by the simulator. Listing 2 and
Figure 2 show the current state of the corresponding AIDM in a Python-based
pseudocode and in UML notation.

Outlook

In the future it will be possible to define a probability distribution which will be used
to generate delays that are introduced into the simulation. Multiple iterations can
then be run with the same distribution to carry out a Monte Carlo analysis. By the
nature of the problem, it is possible to parallelise these iterations arbitrarily so that
an analysis on multiple iterations takes almost the same time as one iteration if

