

optimising railways

SMA Offices

Zürich
Lausanne
Frankfurt

Paris

SMA and partners Ltd

Gubelstrasse 28
8050 Zurich
Switzerland
Phone +41 44 317 50 60
info@sma-partner.com
www.sma-partner.com

 1-00 | 29/10/2021 | Software | Public

A Real-world Algorithm Implementation Using the Algorithm
Platform Posted on GitHub

An implementation of an algorithm based on SPOT using Viriato's Algorithm
Platform.

Abstract

SPOT [1] is a mathematical model for strategic passenger railway planning
building on the well-known PESP (Periodic Event Scheduling Problem) [2]. The
goal of the SPOT model is to obtain an automatically generated and workable
timetable during the strategic planning phase as it aims to provide a passenger-
centric timetable.

We want to provide an implementation based on SPOT using Viriato's Algorithm
Platform to deliver a software prototype that can be actually used by a subject-
matter expert in practice so that the model's results can be assessed by them
without any mathematical or programming background. We demonstrate the
benefits that come with our Algorithm Platform to the researcher.

Our Goals for this Implementation

We want to highlight the benefits that come with our Algorithm Platform to the
researcher:

– Data Acquisition and Provision. The Algorithm Platform retrieves all data
requested by the algorithm from Viriato's database and provides it via an
interoperable REST interface. There is no need to write database queries.

– Rapid Development. The input data provision and the simple way of passing
parameters in combination with the predefined domain data model (AIDM)
reduce the development effort considerably.

– Prevention from Misuse. Relying on the Algorithm Platform reduces the
chance for the algorithm developer to make errors, and also protects them
from erroneous data due to the enforced invariants in Algorithm Platform's
Algorithm Interface.

– Visualisation of Results and Reports. The user can easily explore the
solution which was written back to Viriato, allowing them to inspect the
structure of the results in the available modules and assess their correctness
and quality.

In addition, reports in form of Excel sheets are generated to present the
parameters used and a summary of the solution to the user giving them insights.

https://staging.sma-partner.livingtech.ch/de/software/openviriato#robustness-analysis-through-algorithm-platform
https://staging.sma-partner.livingtech.ch/de/software/openviriato#robustness-analysis-through-algorithm-platform

A Real-world Algorithm Implementation Using the Algorithm Platform Posted on GitHub SMA and partners Ltd

2 2

 1-00 | 29/10/2021 | Software | Public

Note that our implementation of SPOT deliberately deviates in some aspects from
the original model in order to enhance the applicability in practice. The main goal
was to demonstrate the use of the Viriato Algorithm Platform rather than an
analysis of the model.

Introducing SPOT

As the input for SPOT we are given a list of origin-destination ("OD") relations
describing the travel wishes of a set of passengers, and a set of trains that have
a list of defined commercial stop locations and minimum travelling times between
these node pairs.

The SPOT model routes passengers through a train network from their origin to
their destination by modifying the arrival and departure times of the trains,
therefore impacting the total travel times (consisting of transfer times at stations
and travel times on trains) of the passengers being routed. The objective is to
minimise the total travel time for all passengers of all OD relations.

Figure 1 provides an example timetable generated with SPOT. In our small
example, let there be only one OD relation with origin A and destination D. The
given trains travel only from A to B, B to C and C to D. Therefore, passengers
have to change twice, once in B and again in C. In this simple case where the
only relation is for demand from A to D, SPOT has optimised the arrival and
departure at both changes, such that the transfer time is minimal.

Figure 1 A graphic timetable for the example with two transfers. (Viriato screenshot).

A Real-world Algorithm Implementation Using the Algorithm Platform Posted on GitHub SMA and partners Ltd

3 3

 1-00 | 29/10/2021 | Software | Public

For this example, we defined five minutes as the required minimum transfer time.
The connection clock in Figure 2 allows us to verify that the transfer time at B is
minimal, since the train to C departs exactly five minutes after the arrival of the
train from A.

Figure 2 A connection clock for station B. (Viriato screenshot)

Deviations from the Theoretical SPOT Model

Our SPOT implementation deviates from the original in [1] in several places for
sake of practical applicability.

Cancelling of Commercially Irrelevant Parts of Trains

The SPOT model optimises travel times only for those parts of a train run which
are used on a passenger's route. Depending on the input data, it may happen that
parts of a train run are not used by any passenger in a SPOT solution, and this
implies that the travel time on these parts are not necessarily optimised.
Therefore, it can happen that a train runs with an unrealistically slow speed on
some track section in the solution. In practice, a train often spends a large part of
this "idle" time stationary at a station. For sake of simplicity, we cancel these sub-
parts in a solution if they occur at the beginning or at the end of a train run, and
completely cancel and remove trains which not used at all by the algorithm. Figure
3 shows a timetable, where irrelevant parts of scheduled trains have been
cancelled.

https://staging.sma-partner.livingtech.ch/de/software/openviriato#robustness-analysis-through-algorithm-platform

A Real-world Algorithm Implementation Using the Algorithm Platform Posted on GitHub SMA and partners Ltd

4 4

 1-00 | 29/10/2021 | Software | Public

Using the Algorithm Platform's C# API wrapper methods CancelTrain(...),
CancelTrainBefore(...) and CancelTrainAfter(...) this is a straightforward
operation.

Figure 3 A graphic timetable where all commercially irrelevant parts of trains have been cancelled.

(Viriato screenshot).

See 'Cancelling a Train' on GitHub for a code example

Simplified Passenger Routing

For sake of simplicity, in this case we chose to neglect the waiting time at a
passenger's origin station. Moreover, at present we assume that all passengers
of an OD relation select the same travel route. This assumption contrasts with the
implementation in [1], where the waiting time at the origin is considered.
Therefore, not all passengers of an OD relation travel via the same route. The
difference between these two cases can be seen in Figure 4.

https://github.com/sma-software/openviriato.algorithm-platform.showcase.spot#CancellingATrainCodeExample
https://staging.sma-partner.livingtech.ch/de/software/openviriato#robustness-analysis-through-algorithm-platform

A Real-world Algorithm Implementation Using the Algorithm Platform Posted on GitHub SMA and partners Ltd

5 5

 1-00 | 29/10/2021 | Software | Public

Figure 4 Simplified passenger routing (left), original SPOT implementation (right).

A solution of our implementation is shown on the left of Figure 4, where
because waiting at A is disregarded, all passengers on the relation A-B use the
faster 2nd train. In contrast, on the right hand side we can observe the solution
that would be achieved given the full implementation of the SPOT algorithm as
defined in [1]. As the waiting time at A is taken into account, some passengers
use the slower train since in their case it leads to an overall shorter passenger trip
time than waiting for the faster train.

Specific Features of the Algorithm Platform in Action

We will present here some features of the Algorithm Platform which assisted
with the implementation of this prototype.

Reading Line Characteristics

Trains with their basic characteristics (travel route, minimum running and dwell
times, etc.) from a pool of trains can be used by our prototype to build
a SPOT solution. In Viriato, these template trains can be defined conveniently, as
shown in Figure 5, and our prototype queries them directly from the Algorithm
Platform.

Ti
m

e

Distanc...
A B

O
ne

 P
er

...

1st Train

2nd Train

Ti
m

e

Distanc...
A B

O
ne

 P
er

...

1st Train

2nd Train

Viewer does not support full SVG 1.1

https://staging.sma-partner.livingtech.ch/de/software/openviriato#robustness-analysis-through-algorithm-platform

A Real-world Algorithm Implementation Using the Algorithm Platform Posted on GitHub SMA and partners Ltd

6 6

 1-00 | 29/10/2021 | Software | Public

Figure 5 A train run (data anonymised) that can be used as a template train in SPOT.

(Viriato screenshot).

See 'Reading Line Characteristics' on GitHub for a code example.

Parameter Passing

The Algorithm Platform and the C# API wrapper provide a convenient way to pass
user-defined parameters to SPOT. For example, our implementation allows the
setting of a bound on the number of allowed transfers for any passenger on their
route. Before the algorithm is started, the user enters the desired value using a
dialog, as shown in Figure 6.

https://github.com/sma-software/openviriato.algorithm-platform.showcase.spot#ReadingLineCharacteristicsCodeExample

A Real-world Algorithm Implementation Using the Algorithm Platform Posted on GitHub SMA and partners Ltd

7 7

 1-00 | 29/10/2021 | Software | Public

Figure 6 The dialog to enter the parameters before starting the algorithm. (Viriato screenshot).

See Section 'Passing Parameters' on GitHub for a code example.

Writing Back Planned Trains to Viriato

If a template train defined in the section 'Reading Line Characteristics' on
GitHub is selected by the algorithm as forming part of the the solution of
the SPOT model, then the external algorithm will write it back to the Algorithm

https://github.com/sma-software/openviriato.algorithm-platform.showcase.spot#ParameterPassingCodeExample
https://github.com/sma-software/openviriato.algorithm-platform.showcase.spot#reading_line_characteristics
https://github.com/sma-software/openviriato.algorithm-platform.showcase.spot#reading_line_characteristics

A Real-world Algorithm Implementation Using the Algorithm Platform Posted on GitHub SMA and partners Ltd

8 8

 1-00 | 29/10/2021 | Software | Public

Platform. This consists of two steps. First, the template train is declared to be in
the solution set. Then its arrival and departure times, including reserves, are
updated, and written back to the Algorithm Platform. The resulting timetable can
be inspected with Viriato's graphic timetable functionality, see Figure 7.

Figure 7 A resulting graphic timetable. (Viriato screenshot)

See the section 'Writing Trains Back to Viriato' on GitHub for a code example.

Excel Reports

In addition to the persisted timetable results, we also provide Excel sheets that
our implementation populates with KPIs, allowing subsequent evaluation and
comparison of different solutions. See Figure 8 and Figure 9 for a sample of this
output. Generating these reports programmatically is straightforward using
the CreateTable(...) and related methods with the C# API wrapper.

https://github.com/sma-software/openviriato.algorithm-platform.showcase.spot#WritingBackTrainsCodeExample

A Real-world Algorithm Implementation Using the Algorithm Platform Posted on GitHub SMA and partners Ltd

9 9

 1-00 | 29/10/2021 | Software | Public

Figure 8 Travel time composition per relation generated by Viriato and exported to Excel

Figure 9 A summary sheet generated by Viriato and exported to Excel

References

[1]: 2021 G. J. Polinder, M. Schmidt and D. Huisman, Timetabling for strategic
passenger railway planning, Transportation Research Part B: Methodological,
DOI: https://doi.org/10.1016/j.trb.2021.02.006

[2]: 1989 P. Serafini and W. Ukovich, A mathematical model for periodic
scheduling problems, SIAM Journal on Discrete Mathematics
DOI: https://doi.org/10.1137/0402049

https://doi.org/10.1016/j.trb.2021.02.006
https://doi.org/10.1137/0402049

	A Real-world Algorithm Implementation Using the Algorithm Platform Posted on GitHub

